
Performance And Result Analysis Of Hybrid Adaptive
Random Partition Testing For Improved Bug Detection

And Test Coverage
Reetika Patidar,Mahesh Malviya

Department of CSE, Jawaharlal Institute of Technology vidhya Vihar Borawan (M.P), India

Abstract- Testing is a very crucial process of assuring products
reliability and trust dependencies. Thus for achieving
maximum coverage the test must be generated from overall
distributed regions of input domains and known as partition
testing. But it gives optimal results for homogeneous regions.
Random testing serve better than partition testing but is also
generating high computation overheads. Another technique is
Adaptive Random technique having adaptive nature of
regenerating and passing some of the test cases back to the
input for correcting the next test cases lined to be passed. Apart
from the above benefits of ART the complete problem solution
of PT and RT is not provided. Thus this work proposes a
Hybrid Adaptive Random Partition Testing (H-ARPT). The
effective test cases can be determined if the test comes from
complete regions and covers at least once each type of input.
But all of certain such heavy numbers of inputs are not tested
with some minimum attempts. Hence, a new mechanism is
required which reduces the test size but increases the code
coverage. It works towards assuring the reliability of the
system. This paper proposed a Hybrid ARPT, which works
towards effective and early identification of bugs according
even with their priority levels also. Means the module which is
most critical should be tested more. It overcomes the existing
issues of high testing cost and computation complexity. The
paper also suggests some analytical evaluation factors and
compares the RT, PT, ART with hybrid ARPT. On the
preliminary evaluations the works seems to provide effective
solution of testing domains.

Keywords- Software Testing, Blackbox Testing, Adaptive,
Random and Partition Testing, Hybrid Adaptive Random
Partition Testing, Coverage analysis and Fault Detection Rate;

I. INTRODCUTION
The software industry had suggested so many different types
of testing over the last few decades by which the
detection accuracy and quantity is improved. They
are focusing on different parameters and use various
tools for bug’s removal. But still some question remains to
be answered like the selection of testing and which one is
best. Normally, the programs testing criteria for analysing a
code is its subset of inputs with a very smaller range.
These small set of input test criteria is termed as test cases
and combination of these cases according to different
operating conditions and program codes are called as test
suites. An aim is towards feeling confident about the test
cases and assuring that all the defects are removed. The
testing technique uses some of the information about the
programs or its structure for guiding the generation of test
cases and suites. This information might be related to

functional behaviour, flow of data, common hitting errors or
their respective combinations.
 Partition testing
Partition testing is one of the testing mechanisms which
divide the inputs domains into various sub-domains
categorized according to some separation conditions of test
cases [1]. Here the test cases are selected from every
sub- domain where the input sustains some of the
equivalence partitioning properties for encountering the
errors. It could be made feasible by modelling the test cases
using some knowledge about the test criteria and
program. In random testing, the pseudo random number
is used for selecting the test case from input domain
according to some random condition. Some of the
researchers found that the partition based knowledge
based testing is lower performance and accuracy while
comparing with random testing. Also the failure rates
covered by random testing are more than the partition
testing.
The higher probability of error detection in random testing
with complete coverage of inputs using partition testing
can be used combining for better serving the defect removal.
Even though such testing would have the benefit that
consistency data could be formed, in follow with most
software of any difficulty, it is not possible to model
precisely enough the sharing of real input data [2].
The term "partition testing," in its broadest sense, alludes to
an exceptionally general family of testing strategies. The
primary characteristic is that the program's input domain is
divided into subsets, with the tester selecting one or more
element from every subdomain. In the testing literature, it is
normal not to limit the expression "partition" to the formal
mathematical importance of a division into disjoint subsets,
which together span the space being considered. Instead,
testers for the most part utilize it as a part of the more
informal sense to allude to a division into (perhaps
overlapping) subsets of the domain. The objective of such a
partitioning is to make the division in such a path, to the
point that when the tester chooses test cases based on the
subsets, the subsequent test set is a good representation of
the whole domain. Ideally, the partition divides the domain
into subdomains with the property that inside every
subdomain, either the program produces the right response
for each element or the program produces an erroneous
response for each element.
In spite of the fact that code coverage strategies are not
generally viewed thusly, they can be considered to be

Reetika Patidar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4421-4428

www.ijcsit.com 4421

partition testing strategies. Case in point, statement testing
obliges that sufficient test data be selected so that each
statement of the program is executed in any event once. This
divides the input domain into nondisjoint subdomains with
every subdomain comprising of all test cases that cause a
specific statement to be executed. Since a given test case
will for the most part cause numerous statements to be
executed, it is an individual from the subdomain determined
by every such statement. Extension testing likewise divides
the domain into non-disjoint subdomains. Way testing
obliges that sufficient test data be selected so that each way
from the program's passage statement to the program's exit
statement is traversed in any event once. This technique
does divide the input domain into disjoint classes since a
given test case causes precisely one way to be traversed.

Adaptive testing
Adaptive testing is a novel mechanism covering some
different aspect of testing. It is a feedback oriented testing
presenting its strong nature against the random and partition
testing. Though its application cost and complexity is higher
than others. It provides the effective test selection
criterion with reduced test cases. Some of the analytical
evaluations over all the above testing is found as:
partition testing performs well with equal size partitions,
random testing gives better results in random test
generation with higher coverage, and adaptive testing
serves better then both with high computational
complexity. Partition testing with proportional allocation is
shown to perform at least as well as random testing in
terms of all of these criteria [3]. Some empirical answer of
exact comparison of these testing methodologies is not yet
present. Also, if all the three mechanisms are used
simultaneously then their working operation and behavior is
not controlled as suggested many times.

Component Testing
The application of randomly constructed test sets to software
components would appear to offer the same benefits as for
compilers. Hence the author considered the implications of
adding random testing to the British Computer Society
component testing standard . The use of such testing is
certainly accepted in the sense that published material uses
the approach. Then, random argument values and
parameters are computed for the application of tests of the
standard mathematical functions (sin, cos etc) in the Pascal
Validation Suite . However, the use of this technique is
effective due to the ease with which automatic acceptance
checking can be applied. With such a process, a large
number of tests can be run automatically.
Hand analysis of the few that fail (if any) can then be
undertaken into the account. Based on the strength of the
acceptance logic, the testing can be very thorough. Even
when the acceptance criterion is merely that the program
does not crash, confidence in this property is obtained at
modest cost. The strength of conventional component testing
is assessed by metrics such as statement coverage. With
random testing, the number of random tests is of little value
unless the distribution is a reasonable fraction of the entire
input domain principal. Here we finds a problem with the

BCS standard, as a key aspect of the standard is the
testedness metric. The approach taken below is that the
coverage of the input domain is measured by means of the
equivalence partitions used for equivalent partition testing,
together with the number of tests run.

Random testing
For Better understanding let N be the total number of
elements in the input domain, and suppose we want to
randomly select n inputs for testing the system. It may be
possible on the basis of any probability distribution, i.e.,
the n inputs can be selected independently with the
Although sampling without-replacement is obviously more
efficient, the practical implementation of a without-
replacement sampling scheme is difficult and typically not
cost-effective. Moreover, for the applications we are
interested in particularly, input domain size and the
partitions are large enough relative to the sample size so
that the two are essentially similar. Random testing has
generally been viewed as being easy to implement and
therefore cost-effective. However, to actually ensure that
every test case is selected independently according to a
given probability distribution is not at all easy. This
involves a careful definition of the input domain and the use
of appropriate sampling schemes. If one tries to accomplish
this other part, one runs risks such as incompletely covering
the domain, selecting inputs from some parts of the domain
more intensively, or introducing other biases.
After studying the various articles related to random testing,
partition testing and adaptive testing. Partition testing deals
with dividing the input space into several partition. But it
works well only with equal sized partition. In random
testing the use of pseudo random generator decreases the
test case count but increase the computational complexity.
While adaptive nature support some revert logic of further
test selection. It is based on feeding back the derived results
for further correcting the next input. Though most of the
changes is made and various improvements is performed in
these areas; still some issues which remains unsolved. Here
this work focuses these issues as problem areas like
selection criteria of random and partition test is not clear at
the point of testing. The criteria must contain coverage rate
and fault rate for better analysis and error detection.
Adaptive nature with random and partition behavior is
having high computation overheads. This it requires
conservable higher time for detecting the faults. If the sub
areas or components of partitions are not balanced the
performance are not desired and the results are not clear. It
also not gives any idea about the coverage of the functional
blocks.
This work proposes a novel hybrid adaptive random testing
using partitioning logic. Here the technique generates the
test data which is thoroughly distributed in overall region of
the divided partition. Thus, the suggested method can turn
formal detection to complete analysis and the probability of
fault detection is also increased. Traditionally the adaptive
random testing is of only two forms; distance based and
partitioning based. The suggested hybrid approach is
combination of both the measures for effective
determination of faults with minimum number of test cases.

Reetika Patidar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4421-4428

www.ijcsit.com 4422

II. BACKGROUND
The testing can be categorized according to their working
style and behaviour. Mainly it is categorizes as black box
and white box testing. In black box testing the codes are
tested as a combined functional blocks and its internal
structure is not known.[15]
Software size and its handling complexity is increased as the
development process proceeds and modular designs gets into
shape. Lots of interaction needs to be taken over for
accessing and measuring the strength of bounds and
branches. For effectively quantifying the behaviour of the
software some reliability improvements and judgment
methods is used along with development or after
development. This process is termed as software testing
which is used to identify the bugs in program codes
parallel as the code progress. Testing involves various
resource utilizations and traversing the code blocks at
least once for analysing the behaviour and
integration actions. Measuring the strength of code and
estimating the testing resources for removing the bugs may
increase the reliability and hence it is included in software
development life cycle.[15]

The inputs ranges are used for applying multiple
executing conditions and their behaviour. It serves a
parametric model which works as a finite time events
and calculates the responses of the overall software’s. Te
white box testing as an approach whose aims is towards
detecting the internal structure bugs and problems. Its goal
is reliability detection and estimation by completely
analysing the internal structure a logic handling by the use
of control graphs. It is having very large input sp[ace
and hence it is quite complicated to handle such
methods. Totally the aim is towards the identification of
faults that leads to failure the means of above testing
strategies.
Now, the tester requires effective testing which identifies all
the defects with minimum efforts. It can be made feasible
by effective uses of both black box and white box testing.
This work specifically focuses on random testing, partition
testing and adaptive testing. Understanding the domain
completely requires a clear view of each before analyzing
and applying any measures.
 (i)Random Testing [4]: It is used for testing the code
blocks by applying a set of input condition selected
randomly for the domain. It is black box testing and
hence it does not requires any internal structure information.

It is practically formed by the use of pseudo random
generator because pure random values are not provides
correct mapping of input domains. It is easy and widely
applicable and its implementation and execution time is
also very less. Here are some types of random testing:
o Pure random: Test cases are randomly

generated until appear to be enough.
o Guided by number of cases: Test cases are

randomly generated until a given number of cases has
been reached.

o Error guessing: Test cases are generated by the
subject’s knowledge of what typical errors occur
during programming. It stops until they all appear to
have been covered.

(ii) Partitioning [5]: This technique divides the input
ranges into various sub domains and classes according to
different conditions. These classes are known as
equivalence partitions to reduce the total number of test
cases because in this the test cases are selected from
each partition. It is part of functional testing which
represents pure black box nature. These classes are the set
of some valid and some invalid inputs with range limits.
The partition logic uses the sampling theory of statics for
categorizing the population. Applying the testing of
software by selecting the random test samples from the
population is called as partition testing. In some cases
where simple random function is used the partition testing
outperforms the random testing in terms of failure
detection rates.
(iii) Adaptive Testing: It works towards selecting
the adaptive idea of testing for minimizing the test
oracle

problems and optimizing the results. It minimizes the
total cost of error and faults detection by the use of
partition logics.
 (iv)Adaptive Random Testing [6]: It is based on
a simplistic intuition that if the partition and random logic
fails to detect bust the condition which reduces the faults
occurrence should places closes to next inputs. Thus, the
inputs must be placed nears to last successful test. It
preserves the randomness property and will serve the
feedback to the system. ART is developed as an
enhancement to random testing with an objective of
using fewer test cases to detect the first failure.
Some detailed study and their nature is clearly defined in
the next section of literature survey. It also deals with
all the relative changes taken places over the last few years
for improving the above testing strategies. Aim is towards
minimizing the test cases and its cost.

III. RELATED WORK
During the last few years software testing had grown
tremendously with their techniques. Lots of new and
overwhelming methodologies are developed which
improves the testing performance and decreases their
costs. Among them, some approaches shows their strong
presence in the respective areas and are related to their
work are taken here as literature. These are:
In the paper [7], a dynamic partitioning strategy is
presented for selecting the test cases through some online

Reetika Patidar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4421-4428

www.ijcsit.com 4423

feedback mechanism. Here the approach is focuses on online
medium for generating the test sequences and starts with
selecting criteria of online partition. Also the testing is not
based on the codes or internal structure of the
programs instead it uses only some metadata information
and passing and failing condition of previously executed
test cases. It does not requires any program code thus can
be used anywhere with direct software bundles. The
paper also evaluated the cost effectiveness of the dynamic
partitioning approach and presents the comparison with
some traditional testing. For evaluating some basic
programs are used and the results shows the minimum
number of test cases requires for detecting the complete
faults.
 Although, solving all problems related to testing oracle is
not feasible each time because of their high complexity. In
the paper [8], some of the evaluation is perform on random
testing method of black box testing. Here the random test
cases are generated for identifying the total bugs from test
oracles. It also enables the coverage, if it is high the
probability of error detection is more and if the lesser
coverage is achieved then the test cases quantity is
increased. The paper deals with complete analysing the
random testing through a mathematical model which
includes identification of effectiveness of random testing,
comparison of random strategies, scalability measurement
predictability of two runs and threats to validity.
In the paper [9], some more classification is provided on the
adaptive random testing (ART). Here the ART is completely
studied for demonstrating the behaviour of technique
with higher detection rates of faults in comparing with
normal random testing. The paper also suggests couple of
new ART algorithms fir further increasing the effectiveness.
The suggested algorithm provides similar working but the
overhead associated with the testing gets reduced. Here the
overall test is subdivided into several domains and test
is selected from the largest partition. As the partition process
is operates on the basis of a randomly preferred test case, we
call this process ART by random partitioning. It ensures that
test cases maintain to be widely broadened by only selecting
new cases from partitions which enclose no preceding test
case.
 After studying the cores of random testing some of the
authors had tries their work with anti random testing. This
anti random testing improves the fault detection capability of
existing random test by selecting the test which is different
from the previous test. The test cases generated by anti
random test are more evenly distributes in input partition
than the random test. It basically applies form specific
numerical input ranges because of their measurable property.
Apart from all the above benefits some more modification is
provided in antirandom testing in [10]. The proposed
techniques basically free the dependency of only numerical
inputs of antirandom testing. The suggested technique is
more fault detection rates than any of the random testing
variants and is tested on various applications. Numbers
of test cases are functional and test for detection of faults
inserted by using transformation testing.
The paper [11] covers some aspect of partition testing logics
and overcome its existing problem. The work detected that if

the sub-domains of the testing inputs for the partition is not
homogeneous than their performance are not as desired
and their success also not contribute so much confidence.
Though the code coverage parameters in testing is taken for
grated as best practice always. The author’s main target is
to develop strategies for the automatic progression of a test
suite that does inspire assurance. The work suggested is a
combination of test suite augmentation and reduction which
assures changes handling and repetition of testing logic.
The paper identifies the semantic difference between the
overlapping transform partitions with comparable
behaviours of programs. The generated test cases are
witnesses of the behavioural difference of both programs.
Semantic change is defined formally based on the notion
of change partitions overlapping for original and changed
program.
The paper [12] focuses towards further improving the
performance and error detection probability of
adaptive random testing. It mainly increases the fault
revealing ability of random testing by introducing the ART
based on two point partitioning. According to the new
algorithm of ART-TPP the given are of testing inputs are
divided into two or more section based on midpoint
theory rather than direct division of\r equal division.
Here the first point of division initialization is
randomly generated. The selection of second point is
through candidate set according to the maximum criteria
distance. The experimental evaluation is also given with
some existing ART algorithms: ART-RP and ART-BP. The
partition can be iteratively performed until the potentia
faults are found or the size of test data set reaches the pre-
set limit. Analytical evaluation proves the effectiveness
of the suggested approach.
The paper [13] focuses on one of the major difficult with
testing which is its automated generation. This automatic
generation is performed by prior making some of
the generation criterion. It reduces the efforts and cost
of the testing makes the process truly automated. The
paper focuses o generation of test cases from the use of
genetic algorithms. The results are compared thoroughly
with the random testing. Here the designed algorithms
make the use of population and equivalence conditions. If
the selection of equivalence class is correct then the
potential testing complexities is gets reduced. Here the
suggested genetic based equivalence class partitioning
detect the best selection of fitness function and overcomes
the test generation complexity issues. At the primary
level of work of author the approach is serving all the need
of testing.

IV. PROBLEM IDENTIFACTION

Testing aims towards detecting the bugs and faults in the
code of functional behaviour of the code. It always
requires generation of test cases and suites for verifying
their input ranges. It comes under the test estimation
process which is guided by various mechanism names as
testing methodologies. Basically the division is of black
box and white box. Among both the paper had worked
towards improving the black box testing by suggesting

Reetika Patidar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4421-4428

www.ijcsit.com 4424

some modification of unsolved problems. After studying the
various articles related to random testing, partition testing
and adaptive testing. Partition testing deals with dividing
the input space into several partition. But it works well
only with equal sized partition. In random testing the use
of pseudo random generator decreases the test case count
but increase the computational complexity. While
adaptive nature support some revert logic of further
test selection. It is based on feeding back the derived
results for further correcting the next input. Though most of
the changes is made and various improvements is performed
in these areas; still some issues which remains unsolved.
Here this work focuses these issues as problem areas.
Some of the major working areas are identified as:
(i) Selection criteria of random and partition test is not
clear at the point of testing. The criteria must contain
coverage rate and fault rate for better analysis and error
detection.
(ii) Adaptive nature with random and partition behaviour is
having high computation overheads. This it requires
conservable higher time for detecting the faults.
(iii) If the sub areas or components of partitions are not
balanced the performance are not desired and the
results are not clear. It also not gives any idea about the
coverage of the functional blocks.
(iv) Generated test always starts with initial condition, it
should be continuously changing with the coverage results
of test cases and hence the improved feedback of test
generation is required with adaptive nature.
(v) Testing must consider the severity level and criticality
of application and its data. It is not provided with any of
the above mechanism. Thus test prioritization is required.
Thus by taking the above problems as a base, this works
aims towards generating a improved solution than any of the
combination or individual effort of partitioning, random
test or adaptive testing[15].

V. PROPOSED SOLUTION
This Software testing involves compete evaluation of
code with minimum number of test cases. If the tests belong
to the internal structure then it is white box testing and
if the tests are taken from the working input conditions then
it is black box testing. Among the black box testing this
work focuses on here basic testing: Partitioning testing,
Random Testing and Adaptive Testing. Aim is towards
improving their performance with reduction in test cases
generation complexity. This work proposes a novel hybrid
adaptive random testing using partitioning logic. Here the
technique generates the test data which is thoroughly
distributed in overall region of the divided partition. Thus,
the suggested method can turn formal detection to complete
analysis and the probability of fault detection is also
increased. Traditionally the adaptive random testing is of
only two forms; distance based and partitioning based. The
suggested hybrid approach is combination of both the
measures for effective determination of faults with
minimum number of test cases.[15]
Descripton:
The approach starts with identification of the systems
specification which needs to be tested. These specifications

might belong to their functionality and working structures.
It cloud be of control and data flow and applies with a
detailed analysis for generating the codes functional blocks
where separate input can be passed. The complete project is
the combination of these individual components. Now, after
the clear separation of each functional block their operating
conditions are determined for generating the individual test
codes. This test codes are based on the property of
inputs. Now before applying here any testing some
verification is planned which rechecks the functional
module dependencies and if the dependencies are zero then
only a module is passed for further process. Now after this
some components start their operations.[15] These are:
(i) Partitioning Process: The individual functional
blocks with zero dependencies is passed in this module
identifies the categories of the input data. These categories
are measures by the behaviour analysis of the data and their
respective functional blocs. After the category division
partitioning of input space is applied. In this the inputs are
divided to various sub domains. Later on the basis of this
several regions are formed. As partition process gives
best results in case of homogeneous division of regions. But
in this work, the hybrid nature uses heterogeneous division
of different sizes regions. [15]
(ii) Pseudo Random Generation: This component is
used for applying the random behaviour of the testing.
Here the heterogeneous generation of regions not serves
as needed. Thus the random generation of test from
different regions has more probability of detecting the
faults on time. But it also serves the higher
computational cost. Thus the partition of regions is made in
such a way that each partition size reduces with fifty
percent with next creation. Means if the first region is of 50
percent then the next should be of 25 and later will be of
12.5. Thus by this logic a test frame is constructed and
passed for next module. [15]
(iii) Decisional Conditions: Now this module compares
the randomly generated partitions and their test frames.
Here the comparison condition checks whether the
coverage achieved is maximum with closes distance of
relativity for test inputs. If the condition is met then the test
is taken to be successful. And if the test frames are not up
to the mark then the readjustment of logics are made. After
this, proceeds with the next candidate selection for test. [15]
(iv) Adaptive Logic: This nature shows the
adjustment probability of the partitions and inputs when the
desired output is not met. By this always some guiding
results are feed back to the inputs regions so next time
the regions and their combinations of input passing for
testing can be changed. In this ways some guidance
regarding to this testing is always available with adaptive
nature. [15]
(v) Coverage and Distance Comparison: This module
deals with comparing the empirical result. It measure the
coverage achieved from the test generated and distance of
the test with faults. If the test cases are achieving
maximum coverage with minimum counts the testing is
serving their best. [15]

Reetika Patidar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4421-4428

www.ijcsit.com 4425

Later on the generated test cases are tested thoroughly
on various scripts for detecting the bugs. Here the works
aims towards maximum bugs removal with near optimal
efforts and costs. Thus the effective combination of all
the above black box testing is used.The above process is
used for creating the specification according to the
semantic requirements analysis. Here the testers, main job
is to identify the categories by rationing the correct
separation conditions. Once the regions are divided
variable test frames are generated using random sequence
generation functions. And later on the criteria are verified
for coverage and distance measure conditions.
Branch and Flow statement Coverage Rate:
It is used to identify the code coverage achieved by
generated test cases. If the coverage is maximum and
the number test cases are minimum then it represents
effective testing.
 Now to calculate the coverage of functional bock i is
following:
 Number of executable statements executed=ni
Total number of executable statements = ti

Coverage Ci = (ni / ti) X 100
Which means ni = (ti X Ci)/ 100

Now the total statement is calculated using following
formula:

C=([∑ (ti X Ci)/100] / ∑ ti) X 100 =
∑ (ti X Ci)/ ∑ ti

At the analytical level of evaluation, approach seems to
be effective and well performed than existing mechanism.
The approach also reduces the computation load with better
monitoring and resource consumption analysis.

VI. RESULT EVALUATION
 The suggested system is completely implemented on the
.NET framework which provides various features for
serving the complete feature in the form a tool view. Here
the tool is also been able to analyzed the generation
process on the basis of some of the well known factors
such as number of generated test, compete coverage
achieved by the generated test, generation time, the system
resources such as CPU and RAM utilized etc. The robust
experimental analysis shows the tool behaviour setting a
milestone in the field of test case generation and coverage
analyses. The partition and random test will give the
effective results after a complete evaluation and
demonstration of the developed tool. Result obtained is in
the form of Comparison Table’s, Graphs, Utilities
Functions, Features, Parameter Covered tables.

Result Set Table 1: Normal Test Generation

S.
No

Test Data
Test
Type

No
Testing
(Test

Count)

Reduced
Test

Counts

Generation
Time

CPU
Utilization

RAM
Utilization

Page
Faults

1 Test Set 1 Static 48 18 0.577 12% 45.204 55%

2 Test Set 2 Static 54 9 0.53 9% 45.39 55%

3 Test Set 3 Dynamic 26 12 0.42 7% 45.50 54%

4 Test Set 4 Dynamic 99 21 3.96 27% 46.67 54%

Reetika Patidar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4421-4428

www.ijcsit.com 4426

Result Set Table 2: Selective Test Generation
S.
No

Test Data Test Type
Partition

Logic
Selected

Attributes
CPU

Utilization
RAM

Utilization
Page Faults

1 Test Set 1 Static CSV 02 6% 43.49 33%

2 Test Set 2 Static CSV 03 16% 43.53 35%

3 Test Set 3 Dynamic CSV 02 5% 43.29 33%

4 Test Set 4 Dynamic CSV 04 19% 44.03 36%

Result Set Table 3: Pseudorandom Selective Test Generation

S.
No

Test Data Test Type
Reduced Test

Counts
CPU Utilization RAM Utilization Page Faults

1 Test Set 1 Static 18 12% 47.25 31%

2 Test Set 2 Static 09 18% 48.36 32%

3 Test Set 3 Dynamic 09 20% 49.89 34%

4 Test Set 4 Dynamic 21 24% 50.44 37%

Result Interpretation(1)
Table shows the results of multiple test combinations of
attributes along with the fixed and variable number of
attributes. Table is concluding the reduction of the test set
counts after use of Hybrid Adaptive Random Partition
Testing and increase in the accuracy of calculation of test
cases. Also that the process of calculation the test cases
involve lesser system resources like CPU and RAM
utilization. we found the maximum coverage with reduced
test cases generated using proposed approach.
Result Interpretation(2)
The test case generation process always gives all possible
combinations of test cases. Table 2 shows the facility of
selecting the number of attributes that must included in the
resultant test cases mandatorily or by choice. Our tool
follows comma separated values for the giving number of
selected attributes. Also the system performance while
generating selective results.
Result Interpretation(3)
Selective results (Table 3)shows the combinations of the
test cases that must include the selected attributes only, but
also we can randomize the results so to get the coverage of
the test case maximum. This can be done using
Pseudorandom generator.
Coverage Anaysis:
Now the above generated comma separated value (csv)
files are passed as an input to the ComCoverage tool which
analyses the coverage achieved without partition logic,
with partition logic and with pseudorandom generation
stages of the solution phases.

VII.CONCLUSION

Software testing with adaptive behaviour will always
allows some open process for testing and its re-execution.
The effective test cases can be determined if the test comes
from complete regions and covers at least once each type
of input. But all of certain such heavy numbers of inputs

are not tested with some minimum attempts. Hence, a new
mechanism is required which reduces the test size but
increases the code coverage. It works towards assuring
the reliability of the system. This paper proposed a novel
Hybrid ARPT, which works towards effective and early
identification of bugs according even with their priority
levels also. Means the module which is most critical
should be tested more. It overcomes the existing issues
of high testing cost and computation complexity. The
paper also suggests some analytical evaluation factors
and compares the RT, PT, ART with hybrid ARPT. On the
preliminary evaluations the works seems to provide
effective solution of testing domains.

 REFERENCES
[1] Elaine J. Wicker and Benching Jing, “Analyzing Partition

Testing Strategies”, In IEEE Transaction of Software Engineering,
doi: 009%5589/91/0700-0703$, July 1991.

[2] B A Eichmann, “Some Remarks about Random Testing”, in
National Physical Laboratory, Teddington, Middlesex, UK, May
1998.

[3] V. N. Nair, D. A. James,W. K. Ehrlich and J. Zevallos, “A
Statistical Assessment of Some Software Testing Strategies and
Application of Experimental Designs Techniques”, in Journal of
Statistica Sinica, University of Michigan, Bell Labs and AT&T
Laboratories, Vol 8, 1998.

[4] Richard Hamlet “Random Testing”, in international Journal of
Software Engineering, Hexawise, doi:0018-9162/5527/2-
22/2000, March 2000.

[5] Kirk Sayre and J.H. Poore, “Partition Testing With Usage
Models”, in University of Tennessee, 2001

[6] Arindam Chakrabarti and Patrice Godefroid, “Software
Partitioning for Effective Automated Unit Testing”, in
EMSOFT’06 Conference by ACM, doi: 1595935428/06/0010,
2006.

[7] Sinaga, A., Zhou, Z., Susilo, W., Zhao, L. & Cai, K. 2009,
''Improving software testing cost-effectiveness through dynamic
partitioning'', in B. Choi (eds), Proceedings of the 9th International
Conference on Quality Software, IEEE, Los Alamitos, USA, pp.
249-258.

[8] Andrea Arcuri, Muhammad Zohaib Iqbal and Lionel

Reetika Patidar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4421-4428

www.ijcsit.com 4427

Briand,“Random Testing: Theoretical Results and Practical
Implications”, in International Symposium on Software
Testing and Analysis (ISSTA), ACM, 2010.

[9] T.Y. Chen, G. Eddy, R. Merkel and P.K. Wong, “Adaptive
Random Testing Through Dynamic Partitioning”, in Proceedings
of the Fourth International Conference on Quality Software
(QSIC’04), IEEE, doi:0-7695-2207-6/04, 2010

[10] Kulvinder Singh, Rakesh Kumar and Iqbal Kaur, “ Effective Test
Case Generation Using Anti Random Software Testing”, in
International Journal of Engineering Science and Technology
Vol. 2(11), 2010, 6016-6021.

[11] Marcel Böhme, “Software Regression as Change of Input
Partitioning”, in ICSE Doctoral Symposium , IEEE, Zurich,
Switzerland , doi:978-1-4673-1067-3/12, 2012

[12] Chengying Mao, “Adaptive Random Testing Based on Two-Point
Partitioning”, in International Journal of Informatica, Volume 36,
2012

[13] Rakesh Kumar, Surjeet Singh, Girdhar Gopal, “Automatic Test Suit
generation with Genetic Algorithm”, in IJETCAS, ISSN (Online):
2279-0055, 2013

[14] Junpeng Lv, Hai Hu, Kai-Yuan Cai, and Tsong Yueh Chen,
“Adaptive and Random Partition Software Testing”, in IEEE
Transaction of Systems , Man and Cybernetics: Systems, ISSN
2168-2216 ,doi: 10.1109/TSMC.2014.2318019, 2014

[15] Mahesh Malviya,Reetika Patidar "H-ARPT: A Hybrid Adaptive
Random Partition Testing for Improved Bug Detection and Test
Coverage "International Journal of Computer Science and
Information Technologies, Vol. 5 (5) , 2014, 6796-6801

Reetika Patidar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4421-4428

www.ijcsit.com 4428

